Electrochemistry and structure of the cobalt-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode.

نویسندگان

  • Wei Kong Pang
  • Sujith Kalluri
  • Vanessa K Peterson
  • Shi Xue Dou
  • Zaiping Guo
چکیده

The development of cathode materials with high capacity and cycle stability is essential to emerging electric-vehicle technologies, however, of serious environmental concern is that materials with these properties developed so far contain the toxic and expensive Co. We report here the Li-rich, Co-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode material, prepared via a template-free, one-step wet-chemical method followed by conventional annealing in an oxygen atmosphere. The cathode has an unprecedented level of cation mixing, where the electrochemically-active component contains four elements at the transition-metal (3a) site and 20% Ni at the active Li site (3b). We find Ni(2+)/Ni(3+)/Ni(4+) to be the active redox-center of the cathode with lithiation/delithiation occurring via a solid-solution reaction where the lattice responds approximately linearly with cycling, differing to that observed for iso-structural commercial cathodes with a lower level of cation mixing. The composite cathode has ∼75% active material and delivers an initial discharge-capacity of ∼103 mA h g(-1) with a reasonable capacity retention of ∼84.4% after 100 cycles. Notably, the electrochemically-active component possesses a capacity of ∼139 mA h g(-1), approaching that of the commercialized LiCoO2 and Li(Ni1/3Mn1/3Co1/3)O2 materials. Importantly, our operando neutron powder-diffraction results suggest excellent structural stability of this active component, which exhibits ∼80% less change in its stacking-axis than for LiCoO2 with approximately the same capacity, a characteristic that may be exploited to enhance significantly the capacity retention of this and similar materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Electrical Properties, Band Gaps and Rate Capability of Li2MSiO4 (M= Mn, Fe, Co, Ni) Cathode Materials Using DOS Diagrams

In this study, theoretical investigations of Li2MSiO4 family cathode materials, including Li2MnSiO4, Li2FeSiO4, Li2CoSiO4, and Li2NiSiO4 are performed using density functional theory (DFT), by GGA and GGA+U methods. The materials properties including electrical conductivity and rate cap...

متن کامل

Performance improvement of Li-rich layer-structured Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O2 by integration with spinel LiNi(0.5)Mn(1.5)O4.

Li-rich layered Li1+xMnyM1-x-yO2 (or denoted xLi2MnO3·(1 -x)LiMO2, M = Ni, Co, Mn, etc.) are promising cathode materials for high energy-density Li-ion batteries. However, their commercial applications suffer from problems such as a drop in the capacity and discharge voltage during cycling. In this work, the cycling performance of a layered oxide Li1.2Ni0.13Co0.13Mn0.54O2 is improved by integra...

متن کامل

Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni)

LiFePO₄ is considered to be one of the most promising cathode materials for lithium ion batteries for electric vehicle (EV) application. However, there are still a number of unsolved issues regarding the influence of Li and Fe-site substitution on the physicochemical properties of LiFePO₄. This is a review-type article, presenting results of our group, related to the possibility of the chemical...

متن کامل

Li(1.2)Mn(0.6)Ni(0.1)Co(0.1)O2 microspheres constructed by hierarchically arranged nanoparticles as lithium battery cathode with enhanced electrochemical performance.

Novel lithium-rich layered Li(1.2)Mn(0.6)Ni(0.1)Co(0.1)O2 microspheres containing hierarchically arranged and interconnected nanostructures have been synthesized by a combination of template-free co-precipitation and solid-state methods. The in situ formed γ-MnO2 spherical template upon co-precipitation gets sacrificed during the course of solid-state fusion of cobalt, nickel and lithium precur...

متن کامل

Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts

The oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 46  شماره 

صفحات  -

تاریخ انتشار 2014